If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-126=0
a = 4; b = 8; c = -126;
Δ = b2-4ac
Δ = 82-4·4·(-126)
Δ = 2080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2080}=\sqrt{16*130}=\sqrt{16}*\sqrt{130}=4\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{130}}{2*4}=\frac{-8-4\sqrt{130}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{130}}{2*4}=\frac{-8+4\sqrt{130}}{8} $
| 20=-2+2r | | 3-6h=-9 | | X+(x+6)=-11 | | 4d=-120 | | 15x=3.30 | | 24x-8=128 | | 2x-4-5x+8=x-3 | | -6-9=10x+10-9x | | d/4–16=20 | | -16x-12=-76 | | X+4(x+6)=11 | | 3/7n+8=17 | | 12x+30/3x+3=6 | | 9=21-4n | | 5p=10/11 | | -3/10v=6 | | 16+b=1 | | -5(x+4)-43=2-40 | | -10/3v=6 | | 4p+25=6(p-3)-3(4-3p | | 6x+2/2x+4=2 | | 6+2m=16 | | X=31-0.5y | | 4x-26+x+18=180 | | 5(t-3)=2 | | 2(3-x)°4(x-2)=0 | | -2x-12=-24 | | 3(3y+8)-2y=17 | | 25/8t=111/2 | | 13x-7=5x=1 | | 8D+4d-5D-4=3 | | 56x+2,194x-53=45(50x+30) |